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ABSTRACT

Applications have been made of the localized

,perturbation technique for conjugated systems within the

framework of H(itckel theory by using the inverse of

cyclic matrices in closed analytical form in terms of

Chebyshev polynomials by the method of Lowdin, Pauncz

and de Heer. It is shown that by this approach, one

can get the exact energy levels and eigenfunctions of

perturbed conjugated systems by a simple non-iterative

method for simple perturbations and by a second order

iteration process for complicated perturbations which

reduces the numerical "size" of the problem considerably.

Possible applications of this technique in other related

fields are discussed.



INTRODUCTION

In this technical note, we shall apply some of the methods developed

by Ldwdin I) in sections VI and VII of the "Studies in Perturbation Theory"

in an investigation of some properties of perturbed simple conjugated

systems. These applications will illustrate the power and elegance of this

new approach. Most of the results contained herein are not entirely new but

the methods used have been recently developed and show promise of being

particularly powerful 4hen applied to more complex systems than those

described here. Thus the emphasis shall-be more on the techniques than on

the results.

1) P.O. L6wdin, Technical Notes Nos. 64 and 65 from the Uppsala

Quantum Chemistry Group.

We shall be working within the framework of the simple Hfickel

approximation, inspite of the well-known limitations of the theory which

results therefrom. The justification for this severe restriction lies in the

usefulness of simple Hiickel theory in correlating diverse properties of con-
2 a)

jugated systems, e.g. Coulson , especially in finding out the biochemical

potentiality of complex molecules and as a starting point for more

sophisticated theories of the electronic structure of these molecules.

Za) C.A. Coulson, Symposium on Molecular Physics, Nikko, Japan (1953).

It is of great interest in this connection to note that recently L6wdin Zb)

generalizing certain ideas of Brueckner has shown, from the view-point

of perturbation theory, how it is possible to obtain from the eigenfunctions

of a "model Hamiltonian" of the Hilckel type the exact eigenfunctions of the

system including all many-particle interactions exactly by means of the

reaction operator. Hence, in principle, we can pass from the eigenfunctions

of the Hdckel Hamiltonian to the exact eigenfunctions of the system, at

least formally. So a simple and direct way of obtaining the eigensolutions

of the H/ickel Hamiltonian for conjugated systems would be of considerable

value.

Zb) P.O. Lbwdin, Technical Notes Nos. 47 and 48 from the Uppsala Quan-

tum Chemistry Group (1960); J. Math. Phys. 3, ... (196z).
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A straightforward solution of the eigenvector and eigenvalues of

the HIlckel Hamiltonian for complicated molecules could be rather time-

-consuming, if the calculation has to be repeated for a range of values

of the basic parameters which enter into the theory. By a perturbation

approach, we can use maximally the already known information of the

basic skeleton reducing the numerical magnitude of the problem consider-

ably and yet, using the method of Lowdin obtaining the exact solutions

which correspond to the use of the whole perturbation series.

In section I, we give a brief review of some of the important

theoretical work done on the theory of simple conjugated systems in the

past. Particular attention is devoted to the role played by the Hdckel

theory in the development of the present day approach to the calculations

on these systems. This discussion is necessarily limited, and it is meant

only to set the stage for the latter sections. Although we point out some

of the successes and failures of the simple Hdckel approach, the discussion

is definitely not a critique of the theory.

In section II, we explain the two methods to be used and derive the

important equations which we shall need later in the succeeding sections.

In section III, we illustrate the utility of the first or non-iterative

method of the preceding section by applying it in the calculations of the

eigenfunctions and eigenvectors of some locally perturbed ring type con-

jugated systems.

In section IV, we continue with the applications and demonstrate

the second or iterative method by using it in calculations on simple con-

jugated systems of both chain and ring type.

In section V, we conclude by giving a brief discussion of the two

methods and some of their possible applications.
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I.. REVIEW OF WORK ON CONJUGATED SYSTEMS

In 1931, Hdickel 3) applied the molecular orbital theory developed

by Lennard-Jones, Hund and Mulliken in an investigation of the -elec-

tron system of the benzene molecule. Hfickel's approach to the problem

can be characterized by two basic properties, i.e. the well-known a-ir

separation of the electrons and the two-parameter nature of the theory

which derives from the use of the so-called "coulomb" and "resonance"

integrals usually denoted by a and P respectively. Since Hitckel' s

original work, a substantial body of literature has developed around the

application of the theory to conjugated systems. Hflckel's theory, especially

in its semi-empirical form, has been an extraordinarily useful tool for

the correlation of mainly ground-state properties of conjugated and aromatic

hydrocarbon molecules. The theory has led to a fundamental understanding

of such properties as resonance stability, bond lengths, charge densities,

free valence and the reactivity of these molecules to electrophilic, nucleo-

philic and free radical reagents. It is still not clearly understood why the

Hfickel theory is so successful although Hall 4a) has pointed out that it is

most likely due to a remarkable correspondence to a more sophisticated

approach rather than to the validity of the many assumptions inherent in

the theory. LdwdinZb) has also pointed out that in the Hfickel theory, the

Hamiltonian operator is not actually specified and this remarkable success

might mean that the two-parameter Hamiltonian matrix may correspond to

the use of the exact effective Hamiltonian operator including all many-body

interactions exactly. It is also of interest to mention that several authors 4b)

have pointed out that indices like Coulson charges and bond orders and

polarizabilities which are used to characterize the properties are precisely

those which would be the relevant indices for the molecule from a considera-

tion of the one-particle density matrix of the molecule. So certain measure

of the success of Hckel theory is due to the fact that we are dealing with

3) E. HfIckel, Z. Physik 70, 204 (1931).

4a) G.G. Hall, Proc. Roy. Soc. (London) A213, 102, 113 (1952).

4b) P.O. Ldwdin, Proc. Int. Conf. Theor. Physics, Japan, Kyoto 1953,

p. 599; Phys. Rev. 97, 1490 (1955); R. McWeeny, Proc. Roy. Soc.

(London) A232, 114 (1955).
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the right type of indices for these molecules. Pople's calculations 5) on the

ground state of aromatic hydrocarbons by SCF MO theory seems to justify

this conclusion. Pople made a number of approximations which had the

effect of making the SCF LCAO MO equations of Roothaan 6) simpler and

more amenable to solution. He also showed that these modified equations,

when applied to alternant hydrocarbons, had the same form as the equations

of Hfckel theory plus some perturbation terms due to explicit inclusion of

electron interaction and that the SCF charge distribution in the ground state

of alternant hydrocarbons is as uniform as in HWckel theory.

The applicability of the Hckel method can be extended to hetero-

systems 7) like pyridine by introducing a "coulomb parameter" appropriate

for the substituted atom and an "inductive parameter" which is meant to

account for the change of electronegativity of the carbon atoms adjacent to

heteroatoms. From detailed calculations on pyridine, Wheland and Pauling 8)

concluded that the value of the inductive parameter must be approximately

one tenth of the coulomb paramneter to explain the orientation in reactions

of pyridine and in later works, this ratio or a value close to it has been

used extensively. In recent years and in light of more refined calculations

of an SOF type such as those reported by McWeeny and Peacock 9) and by

Brown and Heffernan I0) considerable doubt has been cast on the validity of

using the inductive parameter originally introduced by Wheland and Pauling.

Coulson and Rushbrooke 11) showed that the HWckel theory within

its initial approximations is internally self-consistent when applied to

alternant hydrocarbons. By self-consistent it is meant that the assumption

that all of the diagonal elements of the Hamiltonian matrix are equal leads to

the conclusion that in the ground state, the Coulson charges of the individual

atoms are all equal and thus does not contradict the original assumption.

5) J.A. Pople, Trans. Faraday Soc. 49, 1375 (1953).

6) C.C.J. Roothaan, Revs. Modern Phys. 23, 69 (1951).

7) E. Mickel, Z. Physik 12, 310 (1931); 16, 628 (193Z).

8) G.W. Wheland and L. Pauling, J. Am. Chem. Soc. 57, Z086 (1935).

9) R. McWeeny and T.E. Peacock, Proc. Phys. Soc. ALXX, 41 (1957).

10) R.D. Brown and M.L. Heffernan, Australian J. Chem. 10, Z11 (1957).

II) C.A. Coulson and G.S. Rushbrooke, Proc. Cambridge Phil. Soc. 36,

193 (1910).
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Coulson and Longuet-Higkins i2a) in a series of papers generalized

the ideas of Wheland and Pauling and developed a second order perturba-

tion theory for conjugated systems. They derived some very basic theorems

concerning the total charge orders and bond orders of the w-electron system

and defined certain polarizability coefficients. These coefficients have

proved extremely useful in understanding the chemical reactivity and the

changes produced in the properties of a conjugated molecule on substitution

of a carbon atom by a heteroatom. Longuet-Higgins l2b) has applied these

polarizability coefficients in an understanding of the basic properties of

heteromolecules.

Lowdin 13) has extended the theory and generalized the definition

of charge orders and bond orders to account for the non-orthogonality of the

basic atomic orbitals. He also emphasized the importance of the charge

orders and bond orders of the individual molecular orbitals.

The choice of the value to assign for the coulomb parameter of

the substituted atom has always been a problem. Wheland and Pauling based

their choice on consideration of the electronegativity differences between

the heteroatom and carbon atom and both the Pauling 14) and Mulliken 15)

scales of electronegativity have been used. It is evident now that the value

of the coulomb parameter which should be assigned depends on the physical

quantity under consideration. Thus one value of the coulomb parameter will

give good agreement with reactivity data whereas a rather different value

is necessary if agreement with dipole moment data is sought. Illustrations

of this fact are numerous in the literature but we might mention the cal-

culations of Longuet-Higgins and Coulson 16) Orgel et al 17) Lbwdin 18)

IZa) C.A. Coulson and H.C. Longuet-Higgins, Proc. Roy. Soc. (London)

A191, 39 (1947); A192, 16 (1947); A193, 447, 456 (1948); A195, 188

(1948).

12b) H.C. Longuet-Higgins, J. Chem. Phys. 18, 275 (1950).

13) P.O. Ldwdin, J. Chem. Phys. 21, 496 (1953).

14) L. Pauling, J. Am. Chem. Soc. 54, 3570 (1932).

15) R.S. Mulliken, J. Chem. Phys. 2, 782 (1934); 3, 573 (1935).

16) H.C. Longuet-Higgins and C.A. Coulson, Trans. Faraday Soc. 43,

87 (1947).

17) Orgel, Cottrell, Dick and Sutton, Trans. Faraday Soc. 47, 113 (1951).

18) Reference 13.
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Lofthus 19) and Hameka and Liquori ZO). It is, however, desirable

theoretically that with one particular value of the parameter we should be

able to interpret the diverse properties of heteromolecules.

The most recent tendency has been to carry out some type of SCF

CI calculations br the it-electrons with integral approximations of the

type introduced by Pariser and Parr 21) and then to choose the parameters

in Hdckel theory in such a way that the SCF results for the charge

densities in the ground state are reproduced. The calculations reported

in references 9 and 10 are of this type and Amos and Hall "2) have reported

a similar type of calculation. The results have led to the conclusion that

the value of the coulomb parameter for nitrogen, for example, in pyridine-

-like systems should be between 0.2 and 0.4 in order to reproduce the

SCF results.

The simple Hfickel theory, so useful for the correlation of ground

state properties, cannot adequately describe excited states. Thus, it is

not possible to explain the spectra of benzene, pyridine and the disubstituted

benzene molecules on the basis of the naive idea of transitions between the

filled and unfilled Hftckel molecular orbitals. In order to obtain agreement

with the 'experimental results on the spectra of these molecules, it is

necessary to carry out rather elaborate calculations. Longuet-Higgins 23)

has discussed the excited state calculations in a review article and here

we shall mention only two of the problems.

Coulson 24) showed that the calculated electronic spectra of the

polyacenes could be made more consistent with the calculated ground state

properties if one took into account the overlap integral between neigh-

bouring carbon atoms instead of neglecting it as Hdtckel originally did.

19) A. Lofthus, Molecular Physics 1, 9 (1958).

20) H.F. Hameka and A.M. Liquori, Molecular Physics 2, 367 (1959).

21) R. Pariser and R.-G. Parr, J. Chem. Phys. 21, 466, 767 (1953).

22) A.T. Amos and G.-G. Hall, Molecular Physics 4, 25 (1961).

23) H.C. Longuet-Higgins, Advances in Chemical Physics 1, 239 (1958).

24) C.A. Coulson, Proc. Phys. Soc. (London) A68, 81 (1955).
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The inclusion of overlap had the effect of distributing the energy
of the unoccupied molecular orbitals wider and compressing the occupied

molecular orbitals in energy scale which leads to a slightly better under-

standing of the spectra of polyacenes, the spectra being interpreted to be

due to one electron jumps from occupied Hii'ckel molecular orbitals to

unoccupied ones. A study of the problem of inclusion of overlap was made

by Ldwdin 25a) and later by Chirgwin and Coulson Z ,b) and the former

showed that overlap could be included by carrying out a symmetric

orthogonalization of the basis functions which induces a linear transforma-

tion of the Hamiltonian matrix. He also pointed out that the off-diagonal

elements of the transformed Hamiltonian matrix are invariant to shift of

the origin of energy while those of the original overlap neglected Hamil-

tonian matrix are not, and therefore any parametrisation of the Hamil-

tonian matrix must be on the transformed Hamiltonian matrix, rather than

on the original Hamiltonian matrix, as is usually done. The, case of hetero-

atoms has further been studied by Del Re

Although the inclusion of overlap can improve the excited singlet

states, the problem of triplet states remains until one attempts to take

account of electron repulsion in a satisfactory manner. Unless electron

repulsion is included in the calculations, the effects of overlap cannot be

definitely determined as Pople 26) has shown.

Goeppert-Mayer and Sklar 27), very early (1938), tried to calculate

the spectra of benzene using a Hamiltonian which included repulsion between

the rT-electrons. Their calculations led them to conclude, correctly, that

the excited singlet levels were separated from each other and from the

triplet levels by the electron repulsion terms, but numerical errors and

the necessity of approximating many center integrals prevented them from

obtaining accurate quantitative results. Following Goeppert-Mayer and

Sklar, many people have worked on the theoretical calculations of the

25a) P.O. L6wdin, Arkiv Math., Fys., Astr. 35A, No. 9 (1947);

J. Chem. Phys. 18, 365 (1950); Adv. Phys. 5, 1 (1956).

,5b) B.H. Chirgwin and C.A. Coulson, Proc. Roy. Soc. (London) AZ01,

196 (1950).

Z5c) G. Del Re, Technical Note No. 20 from Uppsala Quantum Chemistry

Group (1958). Published in Nuovo Cimento 17, 644 (1960).
26) J.A. Pople, Trans. Faraday Soc. 49, 1375 (1953).

27) M. Goeppert-Mayer and A. L. Sklar, J. Chem. Phys. 6, 645 (1938).
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spectra of conjugated molecules. It is not possible for us to give an account

of the development here but some of the most important work is contained

in papers by Roothaan and Parr 28), Nira 29), Parr et al 30), Dewar and
31) 32)Longuet-Higgins and Pariser . Most of this work has been concerned

with the problem of taking into account electron repulsion (between-the

individual n-electrons and between the a- and 7r electrons) in a satisfactory

way*

18) C.C.J. Roothaan and R.G. Parr, J. Chem. Phys. 17, 1001 (1949).

z9) K. Nira, J. Chem. Phys. 20, 1498 (195Z).

30) R.G. Parr, D.P. Craig and I.G. Ross, J. Chem. Phys. 18, 1561 (1950).

31) M.J.S. Dewar and H.C. Longuet-Higgins, Proc. Phys. Soc. (London)

A67, 795 (1954).

32) R. Pariser, J. Chem. Phys. 24, 250 (1956).

We quote from the review article by Longuet-Higgins mentioned

above:

"It may be said, therefore, that the electronic spectra of aromatic

hydrocarbons are now well understood. The essential features of the present

theory are

(1) that, if suitable molecular orbitals are adopted in the determinant

representing the wave function of the ground state, then the excited states may

be adequately represented in terms of singly excited configurations alone,

provided that,

(2) if the molecular orbitals are not self-consistent, then singly

excited configurations contribute to the ground state and the unexcited con-

figuration contribute to the excited states and provided also that,

(3) atomic orbital overlap is neglected and the integrals determining

the matrix elements of the Hamiltonian are evaluated semi-empirically

rather than by nonempirical calculation. "

We have not yet mentioned either the method of alternant molecular

orbitals (AMO) suggested by Ldwdin 33) or the method of split p-orbitals

33) P.O. L6wdin, Nikko Symp. Mol. Phys. (Maruzen, Tokyo 1954) p. 13;

Phys. Rev. 97. 1509 (1955).
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(SPO) introduced by Dewar and Wulfman 34a). In the former method, which

is applicable to systems with an alternant character, electrons with plus

spin are assigned to orbitals which have large amplitude at every alternate

atom and small amplitude at the remaining atoms while electrons with

minus spin are assigned to orbitals whose amplitude changes alternately

but reversed to the former ones. Thus an attempt is made to incorporate

electron correlation directly in the wave function. The principal idea of

the SPO method is quite similar in that electron correlation is accounted

for by constraining the electrons of different spin to be in different parts

of space, in this case, the two lobes of the p-type atomic orbitals. It may

be remarked that the SPO method has been criticized severely by Griffiths 34b)

Itoh and Yoshizumi 35) have applied the AMO nethod in the calcula-

tion of the ground state energy of benzene and have found that they could

account for 85 o/o of the correlation error as determined by the Parr, Craig

and Ross 30) calculation which was based on very extensive configuration

interaction. Recently, Pauncz, de Heer and Ldwdin 36) derived a general

energy expression for an arbitrary alternant system with closed shell

structure and made a numerical analysis of cyclic systems consisting of

Zn = 4v + Z electrons moving in the field of Zn C-H centers. They arrived

at the result that the energy depression decreases only slowly with increas-

ing n and hence the method should be useful for large systems. Thus, it

appears that the AMO method may indeed be a very simple device for in-

cluding electron correlation in a particular class of molecules. The SPO

method has been applied to ethylene by Dewar and Hojvat 37) with excellent

results and calculations are reported to be underway on the ground

state of benzene. It will be interesting to compare the results of the AMO

and the SPO calculation on this molecule.

34a) M J. S. Dewar ind C.E W ulfman, J. Chem. Phys. Z9, 158 (1958).

34b) J..S Griffiths, J. Chem. Phys. 36, 1689 (1962).

35) To Itoh and H. Yoshizumi, J. Phys. Soc. Japan 10, 201 (1955).

36) R. Pauncz, J, de Heer and P.O. Ldwdin, Technical Notes Nos. 55

and 56 from Uppsala Quantum Chemistry Group (1960); published

in J. Chem. Phys. 36, 2247, 2257 (1962).

37) M.J.S. Dewar and NL. Hojvat, J. Chem. Phys. 34, 1232 (1961).
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Actually, it seems to be quite possible that the two methods can be

and should be combined (CAMO SP0) for the following reason. The AMO

method accounts for correlation in the direction around the ring whereas

the SPO method accounts for the correlation in a direction perpendicular

to the plane of the molecule. Thus the situation here is analogous to the

radial and angular correlation in atoms. Both types of correlation should

be included simultaneously in any calculation if one wishes to determine

the importance of one type compared to the other. It would seem to the

authors that the calculations on the benzene molecule with the AMO approach

probably over-emphasize the around-the-ring correlation.

Both the AMO and the SPO methods can be considered as special

cases of the general idea of different orbitals for different spins which has

been discussed frequently in the literature 38).

38) P.O. Lowdin, Phys. Rev. 97, 1509 (1955); Adv. Phys. 5, 1 (1956).

We shall conclude this section by giving a summary of the physical

properties of interest in conjugated systems and the success or lack of

success which simple Hickel theory has had in dealing with them.

a) Bond lengths.

The bond length is correlated with the calculated total I-bond order,

Prs' which is defined by

Here j runs over the occupied molecular orbitals, n. is the occupation

number of the j-th orbital and the c's are the coefficients of the oribtals

in the basis set. If r and s are not neighbours the bond order is taken to

be zero, The correlation is carried out by drawing a bond length vs bond

order curve based on several experimentally known points for a particular

type of bond. This curve is then used to predict the bond length in other

molecules containing the same type of bond. The Hlckel theory is really

quite successful in predicting the bond lengths of conjugated and aromatic

molecules to an accuracy of about 0. OZ A which is sufficient for most

practical purposes besides being almost at the limit of the accuracy of two
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dimensional X-ray analysis. Detailed calculations by Coulson et al 39)

39) C.A. Coulion, R. Daudel and J.M'. Robertson, Proc. Roy. Soc.

A201, 306 (1951).

have shown that configuration interaction and other refinements do not

greatly alter the relative value of bond orders. The bond order is not very

sensitive to the form of the wave function and thus, inspite of its great

value in other respects, cannot be used as a criterion for a satisfactory

wave function.

b) Charge Densities.

The -electron charge density on any atom in a conjugated molecule

is correlated with the total charge order which is given by

where the symbols have the same meaning here as in equation (1). The

charge orders and bond orders form the elements of the charge and bond

order matrix which for these systems, is twice the first order density

matrix 40, 4) defined by

(re (3)

The charge orders calculated with Htckel theory are sufficiently accurate

to enable the chemist to predict the most probable position at which a charge

reagent will attack the molecule.

40) P.O. Lowdin, Phys. Rev. 97, 1474 (1955).

41) R. McWeeny, Revs. Modern Phys. 32, 335 (1960).
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c) Electric dipole moment.

The 7t-charge distribution calculated by Hickel theory can yield

a qualitative understanding of the values of dipole moments among a

series of molecules. In order to obtain correlation with experimental data

it is necessary to choose values for the parameters which differ consider-

ably from those values which give the best results for other physical

properties. One must be careful, when treating dipole moment data, to

take account of the contributions from lone pair electrons and from the

o--framework. The fact that the dipole moment is quite sensitive to small

changes in the wave function which leave the energy. almost unaffected

further complicates the problem.

d) Orbital energies and spectra.

The simple Hdckel theory is incapable of giving even satisfactory

qualitative agreement with the experimental data on the spectra of con-

jugated systems.
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II. DERIVATION OF EQUATIONS

We consider a system whose Hamiltonian operator can be written as

H = Ho+V (4)

and whose exact eigenfunction T can be expanded in terms of a set of basis

functions {00 . The basis set can be chosen as orthonormal i.e.

<~iLI~/(5)
We can carry out the usual transformation of the original eigenvalue equation

HT = ET into the matrix equation

V c = F (6)

in which

and C is the column matrix whose elements are the expansion coefficients

of T in the basis. set J01k}. Equation (6) can be rewritten in the form

-- (8)

Following Lbwdin in reference 1, we define

r(E 1t (9)

so that

C =G VC Ilk= G (10)

If C can be obtained in closed form and if is a matrix with only a

few nonvanishing elements, some rather simple expressions for E can be

derived. As an example, we can consider the case when only one element is

non-vanishing, say, V 1 1 / 0
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Equation (10) then becomes

or -I

C, cc, Ar C (11)

and

GI = ,  (12)

Equation (11) has been used by Koster and Slater 42) and by Lax 43). The

42) G.F. Koster and J.C. Slater, Phys. Rev. 95, 1167 (1954).

43) M. Lax, Phys. Rev. 94. 1391 (1954).

former authors evaluated the matrix & by means of the transformation of
HO to diagonal form, whereas L6wdin has pointed out that there are many

alternative ways for evaluating this inverse matrix and that actually in many

problems, the matrix itself is niot needed but only the vector solution of a

linear equation system.

The systems which we shall consider here all have the characteristic
property that within the framework of simple Hdckel theory, the matrix Q'0
is cyclic or can be chosen as cyclic with suitable choice of the perturbation

matrix V . It is customary to use only the "tight-binding approximation" or
"nearest neighbour interaction", which we shall also use. This cyclic nature

of f-OS allows us to find (C by using the powerful method developed by

L~wdin, Pauncz and de Heer 44) in a closed analytic form in terms of
Chebyshev polynomials 45)

44) P.O. Lbwdin, R. Pauncz, and J. de Heer, J. Math. Phys. 1, 461

(1960): It is interesting to note that E. Bodewig has used a similar
technique (Matrix Calculus by E. Bodewig, North Holland Publishing

Co., Amsterdam). However, he does not mention the fact that the
polynomials which he introduces are actually nothing but the

Chebyshev polynomials.

45) See appendix for a summary of the properties of these polynomials

and refer to the "Tables of Chebyshev polynomials" published by
National Bureau of Standards in their applied Mathematics Series for
a more detailed discussion.
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We shall now give a brief description of- this method. The physical

model which we have in mind during the discussion is that of a number, n

of atoms placed equidistant from each other on the circumference of a circle.

Interactions between nearest neighbours only are considered. We must

distinguish two cases a) an even number of atoms n Zv and b) an odd num-

ber n = Zv + I

a) n = Zv

In this case, we use the equation (equation 34 of reference 44)

I vD+ al-, IL7  (- P"4X -k V- 1Cg (13)

The S S , which are cyclic and symmetric will be called topological

matrices after Ruedenberg 46) who has discussed C! . The matrix

elements of , which we shall relate to our problem below, are given

by

if p and q are neighbours (14)U.='[1 (14)
9 0 therwise

It is somewhat easier to manipulate the M* S$if these are expressed in

terms of another type of elementary matrix. We write

tVDA~~( .14 )Lq,(5)

where

- ,T4 (16)

is the transpose of

46) K. Ruedenberg, J. Chem. Phys. 34, 1884 (1961).

The elements of the matrices are given by
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The prime is to remind us of the cyclic nature of the problem and simply

means that if (p + k) is outside of the range 1. (p + k).< n we add n if

(p+k)< I and subtract n if (p+k)>n, e.g. if n= 10, k=2 and

p= 9 then 6 (It),1 6 1, 1 "

The -61 are the Chebyshev polynomials of the first kind (see

appendix) and F V (a) is defined by"

F&Y ,) - (18)

Also, e =e and all other ek= 1

b) n= 2v+ 1 47)

Here we use the equation (equation 43 of reference 44)

LL j k  ,.,,~o (19)

47) We use the Chebyshev polynomials of the first kind in this formulation

but it is often more convenient to use the polynomials of the second

kind as we shall do in Section IV.

with

=- CV F F "~l - = ~ VI (20)

o =  and all other Tik (including n V ) are equal to 1.

According to the assumptions of simple Hfickel theory, (G-.) t-- ,

CH. ) and all other elements of "0 are zero.

a and P are parameters which are usually determined empirically. Using

these quantities we can write

- , (21)
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where

(22)

Equation (8) now becomes

C~ CL-(1~& )~ (23)

This equation can be made much simpler if the energy is expressed in units

of . Then equation (23) becomes

C CIV (23a)

Now. from equation 13, we have

DC~j- - , Y-(0CZ k(-4C)Z (Vr1 ) < V)"(4L"I C -0 i6* YaIc so

This can be written in terms of the "M atrices, so that

= ~ ~(h-t,) ~(25)

Using the properties of the ',)matrices, this becomes

-~~ ty t ~ ~~ wij(26)
UY=I

Equation (10) now becomes

~L. ~ .~cIL)Z (s )+ Y + st> )C* (2-7)
0Y=a

and finally

-J-- j]9 E C. ~c+~ I Cj (28)

This is the general equation for the case n = Zv which we shall use, later.

The corresponding equation for the case n = Zv + 1 is

T k C-9 Ck (2(+A, VC9) A
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These last two expressions give rise in application to equation systems

whose order depends upon the number of nonvanishing matrix elements in

the perturbation matrix \ . The equation system is easily solved for one

and two non-vanishing elements and frequently the symmetry of the problem

makes it possible to solve a set of equations of order three. More compli-

cated perturbation matrices give rise to equation systems which are

treated better by a second order iteration-variation procedure 48) We

shall now give a brief description of this method.

48) P.O. Lwdin, Technical Note No. 11, Uppsala Quantum Chemistry

Group (1958), and the reference to the previous literature given

there.

Following L~wdin 1,48) we start from equation 10 and rewrite it as

0 (30)

We note that (4- G') is non-hermitian. Since it is easier to apply

partitioning techniques to a hermitian matrix, we multiply by V from the

left and obtain

(V - VV) 0 Ole 0 (31)

where f\ V 9 wand t(32)

Next we partition the basis set t Dk ) into two subsets ," n

and from equation (31) obtain the two equations

N11 l C + = 0 (33)

o (34)

From these two equations we then obtain

(Nit (35)

If c / 0

Nil ( 'I EC)~o36)
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This equation contains E implicitly and is best solved iteratively. The

iteration procedure as shown by L8wdin in reference 48 corresponds to

the application of the Newton-Raphson process to F(E) . Thus

- ) (37)F'( E)
where the prime denotes differentiation with respect to E . Now

F/E) Nit - i .4H1 ~II tj 4,-11 J (38)

We can simplify this equation considerably by using equation (34) and its

complex conjugate so that

C1 1 C) -

which can be written, very simply, as

(E) = (___ (40)

Also

F(E)= Ivu + No Ci_ + -¢ic _ (41)Ca CI .C,

where the subscript means we take the first element of J cJ . There-

fore, we have that

E", E - "Eu I jcifl
ei ¢(4z)

Now from the definition of and G we obtain

W VGG-(lV'.)\ (3

and therefore,

E E (44)
E~E
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So the iteration procedure consists of choosing a trial value of E , say

E , (different from the eigenvalues of o ) and solving the equation

system (from equation 34)

= (45)

If we- hoose c= I, then

CO (46)

We get

where

We define P \Co t So and notice that for the exact E

G.. -.c - . We can now unite the second order iteration formula as

In the perturbation of homocyclic conjugated systems to heterosystems,

the perturbation usually involves only a few elements in the V matrix,

so that the equation system to be solved will be of smaller order than that

of the original problem. For example, for perturbations on three atoms,

the equation system NC "0 -would give only three equations involving

three coefficients only, and one of these coefficients can be determined from

the normalization condition on C . This whole process is convenient if the

matrix G can be found easily. Fortunately, all heterosystems both open

chain and cyclic, can be achieved by suitable perturbations, diagonal or off-

-diagonal or both on a cyclic system. As we have seen above, the powerful

method of L6wdin, Pauncz and de Heer is available for obtaining G for

cyclic systems and it is this fact. that leads to enormous simplification for the

perturbation treatment.



III. PERTURBED RING SYSTEMS

In this section we shall treat various locally perturbed ring systems,
particularly the mono-, di- and tri-substituted benzene ring by the first

i.e. the non-iterative method outlined in the previous section. Here we

shall consider only simple perturbations with two and three non-zero

elements at most in the perturbation matrix. We shall neglect the non-

-diagonal inductive effects for the present but in a later section we shall

show how they can be taken into account, approximately by first order per-

turbation theory within the framework of the non-iterative method. It is

not our intention to relate our results to the physical properties of any real

molecule; we wish only to illustrate the method and to set forth certain

relationships and data which we believe may be useful in later studies. We

shall treat the mono-substituted six membered ring rather thoroughly and

only indicate how some of the results can be obtained for the more complicated

perturbations and systems.

For reference purposes, we give first the Hfickel theory result for

benzene. There are two non-degenerate levels given by a + 2P and two

doubly degenerate levels given by a + P where a and P are the coulomb

and exchange parameters, respectively. The lowest three levels are doubly

occupied and the other levels unoccupied in the ground state. The eigenvalues

and eigenvectors are shown in Table I. The +'s are the atomic orbitals and

the numbering scheme is given by

4

It should be kept in mind that P is negative and therefore, a 4 ZP is the

lowest level.

TABLE 1. Eigenvalues and eigenvectors of benzene.

T-I •-

Level Energy Eigenfunction Symmetry

C a+ZP (6) (i 1i1 11) aZu

B a+ (12)?(Zi2 ii) eig

A a + 3 (4) (0 1 1 0 ) e g

A' a (i) (ii 2ii) e.u

IB' L- (4)V(Oao1o ) bZu

C' a -2 (6) ( it i i i) bz



The symbols at the right under "Symmetry" are taken from the usual

group theoretical notation whereas the symbols to the left under

"Level" represent a notation in frequent use in the literature of alter-

nant systems. For a general alternant the occupied molecular orbitals

are labelled A, B ... going toward larger negative energies from the

energy zero; the unoccupied molecular orbitals A', B' .'.. are sym-

metrically located on the positive side of the zero of energy and any

pair K and K' differ by a sign change in the coefficients of one set

of atomic orbitals. The same notation can be used for the substituted

alternant if we agree that K will mean that orbital which goes over

into K of the parent hydrocarbon, as the substituents regarded as

perturbation are removed. This convention does not imply that

... B, A, A', B' ... be in ascending energy order as they are in the

unsubstituted case. We shall use this notation later when we give

diagrams of the energy levels of the substituted ring and we shall see

that two levels, as a function of the perturbation, can actually cross.

a) Mono-substituted benzene ring.

If we consider a perturbation matrix V with a single non-zero

element, say Vi, we have from equation (28),

"F&. C- w~~)E c1~ 1 Cl (50)

From this we obtain, on carrying out the summation

C, -1 C Evil,. * il] C(51)
Fv

or K , I (a ) (52)

If - _ _ _

It is possible, of course, to write the f'S out explicitly so that wve

have an implicit equation for the energy parameter a iii term of the

perturbation matrix elements. Thus far, we have found it more practical

and instructive in the cases we have dealt with, to use tables of

Chebyshev polynomials directly and calculate V1I for a number of

different values of a . The energy E can then be graphically displayed

as a function of V .

Let us consider, for example, a six membered unperturbed benzene

ring. The substitution of a nitrogen atom for a carbon and hydrogen atom
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pair gives pyridine as our perturbed system and equation (52) becomes

_, F (53)

It is a matter of a short time to find the behaviour of all of the energy

levels as a function of the strength of the perturbation. We show this

behaviour in Figure 1. We see that two of the energy levels of benzene

remain unperturbed by a single diagonal perturbation. This is to be

expected since there are two molecular orbitals in the Hickel theory of

benzene for which the coefficients of the atomic orbital centred on the

site of the localized perturbation vanish and overlap and inductive effects

have been neglected.

The asymptotes for the energy levels can be found simply by putting

the denominator equal to zero in equation (53), that is to say, the roots

of If. - 0 are the asymptotes provided, of course, that they are

not also roots of the numerator. In the limit of very large perturbations,

the levels which split off are given by V(a) = a . A more general discus-

sion of this effect has been given by L8wdin in reference 1. It is interest-

ing to observe that if V 1 1 = 0 we have F 3 = 0 which gives the energy

levels of the unperturbed problem. Thus we can always write F inV

factorized form since we will always know the unperturbed energy levels,

e~g.

It is also interesting to note that the energy levels split off from

the top and bottom of the "band" just as in the case of localized perturba-

tions in solids .). We shall see later that we have one level splitting

for each substituted atom. We also observe that the energy levels which

are perturbed all move in the same direction.

49) See the discussions in references 42 and 43.

The eigenvectors of the perturbed system can be found from equation
(28). Thus, we find for C 2

lit + /CJ=

F
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But from equation (53),

LL (56)Fs

so that

C,2 (57)

In a similar way, we find that

C3 = t(S C, (58)

S= (59)

CS =7 C3 Cr. -- CZ . (60)

Of course, we know already the eigenvectors going with the unperturbed

levels.

To find the eigenvectors corresponding to any value of the perturba-

tion , I , it is only necessary to use Figure I to pick out the corre-

sponding eigenvalue, turn to the tables of Chebyshev Polynomials, tabulate

the )f's and carry out the operations indicated. The calculation of eigen-

vectors for any value of \, can be carried out quickly, for this case

and the accuracy is limited only by the accuracy with which the eigen-

value can be read from the graph and by the accuracy with which the

polynomials are tabulated (3 decimal places in the tables cited in reference

45 with an interpolation scheme if more figures are needed). For future

reference, we give the matrix C for the mono-substituted benzene ring

when V, =1

0.646 0.517 0.000 0.497 0.000 0. 262
0.413 0.082 0.500 -0.423 0.500 -0.379
0.295 -0.409 0.500 -0.198 -0.500 0.455

0.259 -0.621 0.000 0.563 0.000 -0.481 (61)

0.295 -0.409 -0.500 -0.198 0.500 0.455

0.413 0.082 -0.500 -0.423 -0.500 -0.379

Once C is known, the first order density matrix given by equation (3)

can be calculated readily and since we also may wish to have it for
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reference in later work we give it here:

0.685 0.310 -0.020 -0.154 -0.020 0.310

0,310 0.427 0.338 0.056 -0.162 -0.072

-0.020 0.338 0.504 0.330 0.004 -0.162 (62)

-0.154 0.056 0.330 0.453 0.330 0.056

-0.020 -0.162 0.004 0.330 04504 0.338

0.310 -0.072 0.162 0.056 0.338 0.427

b) Di-substituted benzene ring.

Here, we consider the case that the perturbation matrix V has

two non-zero elements (assumed equal), both located on the diagonal. From

equation (28), two relationships among the Q can be obtained and the

solution of these gives an expression for the strength of the perturbation in

terms of Chebyshev polynomials of the energy parameter. Also the eigen-

vectors and hence the density matrix can be readily obtained from equation

'(28). The procedure is exactly the same as in the mono-substituted case

except that now there are two equations instead of one to solve so that the

calculation is somewhat more involved but still quite simple.

For the six membered ring there are three distinct possibilities for

the position of the two heteroatoms. These are shown in the following

diagrams with the corresponding equation for V and the eigenvectors

(unnormalized).

PYRIDAZINE

V= F3
(63)

C:X=:tc 'I c, =  IF' C (64) :

PYRIMIDINE

(65)

C7'= o' C Z*=.C C'--¢ e=o > CF'M-Ci (66)

CI+ 4la 4- f.- C C+ = C,, er.- * c, +- c+-+ C '=c+ (67)
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PYRAZINE

T(68)

--2 +'  -(69)

The simplicity of these equations is such that it is possible to obtain E =

= E(V) curves in a short time. Care must be taken, however, to associate

,the eigenvalues and eigenvectors correctly. In the above equations, the

top sign in the denominator of the energy expression always must be

associated with the top sign in the expression for the coefficients. For

lpyrimidine we have introduced an obvious notation which can be used in
lieu of the above convention when necessary. It may seem curious, that,

in each of the above cases, we have two expressions for V each apparent-
ly of the fourth degree and therefore we should expect eight energy levels

altogether. If we were to write the denominators and numerators out in

terms of the a's we would find that in all cases just enough roots of the

unperturbed problem are contained in the denominator to cancel the corre-

sponding roots in the factored form of the numerator and thus reduce the

degree of the equations. For example we have for pyridazine in terms of a

VL.)= - C+) (.-,) c.-.-) c - 2-)  (70)

This point is discussed in more detail and for the general case in reference 1.

The E(V) vs V curves for the disubstituted six membered ring are

given in Figures 2 - 4. We note that two levels split off from the band in

these cases. The eigenvectors and hence the density matrices can be ob-

tained in a straight forward manner.

c) Tri-substituted benzene ring.

For this case we have three diagonal elements in the \ matrix.

As in the case of the di-substituted ring, there are three distinct possibilities

for the positions of the heteroatoms, i.e.
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Figure 4. The energy levels of pyrazine as a function of the strength

of the perturbation.
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We shall consider only the last of these for two reasons: 1) it is the most

stable molecule of the three and 2) the symmetry of the molecule makes

it easy to solve the equations by'our present method. We find that

V. - Fa=%, (71)

Here we have two expressions with different. terms in the denominator

rather than the + signs familiar from the disubstituted cases. Also the

second expression here is the same as the expression for V in the case

of pyrimidine if we take the minus sign there. This is easy to understand

from the symmetry of the molecule and the form of the unperturbed

molecular orbitals.

For the eigenvectors we find that for (a) we have

SC=-C5 - 4 ~ ~ ~ (72)

For (b) we have

C3'=S -I C- = c - 4 a'-t Q;(73)

The -energy curves are given in Figure 5 . We note that three levels

split off in this case although two of them remain degenerate.

d) : Perturbations on a seven memberedring.

We can derive equations similar to the above for seven and five

membered rings. The procedure is so similar that there is no point in

discussing it here. For example, with a single diagonal perturbation

equation (29) gives

noo -u o(74)

in close analogy to the result for the six membered ring.
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e) Perturbation on) a ten membered ring.

Both Naphthalene and Azulene can be considered as perturbed ten

membered rings with the perturbation matrix V containing only one non-
-zero off-diagonal elernent, V' - and \, = 0 for all r (For

perturbation to Naphthaiene r I , s - 6 , and to azulene r = I s = 5

all other V., = 0 ). Solution of the equation system generated by equation

(28) gives the result

Naphthalene Azulene. |0

3 7I

5'7

The E(V) vs V curves and the eigenvectors can be obtained as before but

we shall give only the curves for Naphthalene which indicate how complicated

the behaviour can be. (Figure 6).

Other applications of this type have been made of the method but

it should be clear from these examples that the method is quite useful. We

turn next to illustrations of the iterative method.
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IV. APPLICATION5 OF THE ITERATIVE METHOD

When equation (28) of section II yields more than two equations, or

perhaps three if there is a high degree of symmetry in the molecule, it

becomes impractical to use the non-iterative method. We shall now

illustrate the second or iterative method by showing how the molecules

discussed in the tables compiled by Del Re, Mrtensson and Nordling 50)

can be treated.

50) G. Del Re, 0. Martensson and J. Nordling, Technical Note No. 29

from the Uppsala Quantum Chemistry Group (1959).

In the Hiickel theory, as we have seen, using units of 5 , we can

write

(21) L -(4

and we know how to obtain this inverse by the method of Chebyshev poly-

nomials. This enables us to solve, by iteration, equation (31) of section II,

i.e.

(31) HCD 0~v-6&~=

Because of the cyclic character of & only a few elements of the inverse

need be computed. We shall list below the quantities needed to carry out the

second order iteration procedure for those cases considered in reference

50. These are

1) nD and V on the basis of Hidckel theory,

2) .- (E/J-. or its first row in terms of Chebyshev poly-

nomials,

3) equation (3 1).

Although these equations, when written out, seem rather cumbersome

the actual manipulation of them, though tedious, is not difficult and the

convergence of the iterative process is usually quite rapid as we shall

indicate by an example. In the figures, the large dots represent large

diagonal perturbations and the small dots represent smaller diagonal per-
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turbations corresponding to the inductive effect discussed before. In addition

to these, there is a bond perturbation connecting the two in all cases.

It should be obvious from the information shown on the following

pages that the mathematical structure of all of these problems and many

more is quite similar. This is' especially clear from the form of the A's

and B's which we have defined as an aid in writing the equations in an

orderly form.

Cyclobutadiene - Perturbed Butadiene

3 .

1 0 1 V V "

o1 0 1 o V

n-no 0 1] V zzo 1 (77)

1 0 1 0 -1 0 '0 '0

The -1 in the V 4 and V4 1 positions breaks the ring.

G .. F 2
1 ; G 1 2  r 1 F 2

1  1 = - 1 (78)

AI 1 I + AzC 2 +A 3 C4 = 0

A 2 C 1 + A 4 C 2 + A 5 C 4 = 0 (79)

A 3 C I + A 5 C2 + A 6 C4 = 0

A1 _-V1 1 - (V 11+ VIZ + 1)Gll - 2(VIIV 1 2 - V 1I)G 1 2 + 2V 1 2 G 1 3  (80a)

z
A2 - V 1 2 - (V1 I + VZZ)VI 2 GII - (VIVZ2 + V 1 2 - VIZ)G, 2 + V2 2 G1 3  (80b)

A 3 1 + V1 1 Gil + (V 1 2 - 1)G 12  (80c)

A4 a V 2 -(V + v2 - v 2G (80d)

4 V22(V1 V 2 2 ) G 1 1  V1 VG 1 2

A 5 - VI 2G 1 +V 2 2 G1 2  (80e)

A 6 = -G1 1 (80f)
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Cyclopenta-dienyl Pentadienyl radical

radical

32.2

0 1 0 01 VI V12 00 -1

10100 V12 V22 o9 0
01010 0 0 0 0 0 (81)

.00101 0 0 00 0

10 0 10 -1 0 00 0

-1 ) w ,Gi.c. (2

A1 C1 + A2 C2 + A3 CS = 0

AzC1 + A4C2 + A5 C5 = 0 (83)

A3C1 + ASC2 + A 6C5 = 0

Note that although the expressions for the A's are the same as in the pre-

ceding case the matrix elements of G- are different and are given here

in terms of the Chebyshev polynomials of the second kind.

Cyclopenta-dienyl Perturbed form of the radical

radical 3" 3  
2.

1 I

V1 t V12 , 0 0 V1 2

same as in the V12 V22 0 0 0

previous case. = 0 0 0 0 0 (84)

0 0 0 0 0

V12 0 0 0 VZ2
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Note that V1 5 = V 1 2 and V 5 5 = V2 2 from symmetry. G has been given

in the preceding example

BI 1 + B 2 C2 + B 3 G5 = 0

B 2 C 1 + B 4 C 2 + B 5 C5  0 (85)

B 3C1 + B5 CZ + B6C5  0

B, -- 1 - (v 1 + 2V 2 )GI, - 4ViVizGIZ - 2V~ 2G 3  (8 6 a)

B2 = V1 2 - (V1 V12 + VI 2 V2 2 )GII - (V 1 V2 2 + 2V 2 )GI 2 - V1 zV 2 GI 3 (86b)

B 3 = B2  (86c)

2 2B4  V2 2 -(V 1 2 + VZZ)GII - ZVI 2 V2 2 Gl 2  (86d)

B V2 G Va 2-B5  -V IG - 2V 2V 2 G 1 2 GV2 ZG1 3  (86e)

B 6 = B 4  (86f)

Benzene pyridine

1 "4

o 1 0 0 0 1 V11 V12 0 0 0 V12

1 0 1 0 0 0 V12 V2 2 0 0 0 0

0lI. 01 0 100 0 0 0 00 0
0 01 01A0 0 0 0 00 0

0 0 0 101 0 0 0 00 0

L1 00 0 10 V1 0 00 0 V 2 2

G1 -' 3 F3 ; G- Z=T21 T T

o S= oo -1o 1 2 (87)

B0 I 0B 2 + B 3 C6 = 0

B1C 1 + B 4 C2 + B 5 C 6 =0 (88)

B 3 C 1 + B 5 CZ + B 6 C 6 = 0
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Benzene + CHZ radical - Benzyl radical

0 000000 Vi'1 , V 1 l, 0 0 0 0 0

000 VII'

00 (89)
0 for benzene 0 0
0 0

00
0 0

- 0

= Gk 0 'fr (90)

Gll, G,, etc. are the same as for benzene

), C/ + DX.CJ- = C)1

DZC' + tD3 C, = 0

2 2
D1 -- Vit , - VI, it Gil, - V 1GI(92a)

D 2 =-Vll, - VIIV 1 IG1 1 - VI,,Vll-,G1 ,1 , (92b)

D 3 - V -V it 1 1  V 1 1 ,GI, 1 , (92c)

To demonstrate the use of the above equations and to indicate the

speed of convergence of the method, we give now the details of a calculation

on a perturbed buta-diene-like system.

We take V,, = Z , V 2 2 = 0.2 , V 1 2 =0.3 and obtain

Al = 2- 5.3G1 1 + Z.8G1 2 +0.6G 1 3

A2 = 0.3 - 0.66 G11 0.19 G 12 + 0.2 G 1 3

A 3 = -1 + 2GII - 0.7 GI2

A 4 = 0.2 - 0.13Gil - 0. 12G12

A 5 = 0.3Gil + 0.2 GI2

A 6 = . Gil
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A starting value, E0 , of E is chosen, the Gts obtained and the

A's calculated. Any two of the equations in (79) are chosen, CI is set

equal to unity and C. and C 4 are found. We obtained the following re-

sults for one of the energy levels of this problem.

TABLE II. Convergence of the iteration process for a perturbed

butadiene-like system.

Iteration E0  Co C ,'OC. E* (eq. 49)

First 3.0000 1.0000 1.0000 2.77

0.5359 0.5361

- 0. 2009

-0.2361 0.0669

Second 2.77 1.0000 1.0000 2.7798

0.6031 0.6033

- 0.2504

0.1046 0.0905

Third 2.7798 1.0000 1.0000 2.77996

0.600021 0.600021
- 0.247936

0.089418 0.089192

Fourth 2.77996 1.00000 0.999999 2,.779963
0. 599931,- 0.599958

- 0. 247890

0.089180 0.089165

We see from this table that the convergence is quite rapid and indeed the

second iteration would suffice for most purposes. For all of the examples

which we have worked out the second or third iteration has given us the

accuracy we needed. Of course, the number of iterations required

depends on the accuracy of the initial energy guess E which of necessity

should be chosen different from the unperturbed eigenvalues, but in most
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cases one has a rather good idea of what this should be. It should be

mentioned here that if any of the eigenvectors of the perturbed problem

has CI = 0 , then that eigenvalue and eigenvector cannot be obtained

by this second order iteration procedure. Since one is dealing with finite

matrices, one could find out which eigenvalues are lost (excluding those

which are unperturbed) and apply alternative partitioning procedure to get

these by similar procedures.

V. DISCUSSION

We have attempted in this report, to indicate how the methods

described in reference I can be applied to problems of chemical-and

physical interest. Here we wish to give a brief discussion of the relative

merits of the two methods and to point out some possible areas for applica-

tion of them.

First, we recognize that the two methods are basically the same;

the iterative method is introduced only when the complexity of the

perturbation matrix 1 becomes too great to make the first method

tractable. Hence the iterative method, though rather complex, is much

more flexible and powerful than the non-iterative method. The usefulness

of the non-iterative method can be extended somewhat by going to first

order perturbation theory as we shall now indicate.

Let us assume that the Hamiltonian matrix of our problem can be

written as

W-O V 6 \ (93)

where r-l is the matrix of the basic, unperturbed problem, e.g. benzene,

is a large perturbation corresponding to one of the problems solved

in Section III and \O is a small perturbation matrix representing diagonal

and/or off-diagonal perturbations on the substituted ring problem whose

matrix'is -",+V , then from first order perturbation theory we have that

We have already solved the eigenvalue problem corresponding to
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for a number of useful cases so that by a single first order perturbation

correction we can extend our results considerably.

As an example, we consider pyridine with both inductive effects

and bond perturbations, We take -V - 0. 3 and '0. 1

in the perturbation matrix and V, = 1 in the matrix Vo with all

other elements in both matrices equal to zero. We used the iterative

method to find out the exact eigenvalue to the accuracy we needed and in

Table II we compare the results obtained by the iterative and the non-

-iterative perturbation method. Since the bond perturbation is rather large,

we expect that most of the error in E , the perturbation value, isp
introduced by it and, therefore, we also show the results of the two methods
when 0 but = 0. 1 i.e. inclusion of a purely inductive effect.

TABLE III. Coinparison of the first order perturbation results E with

the exact. results obtained by the iterative method, Ei>for

py ridine.

Energy 0t 3 Vae~ 0 0 o

level E E I  E_ E

o 2.633 2.6601 2.3125 2.3132

B 1.370 1.3550 1.3187 1.3188

A 1.050 1.0512 1.0500 1.0512

A' -0.921 -0.9057 -0.6688 -0.6684

B' -0.950 -0.9512 -0.9500 -0.9512

C' -1.982 -2.0094 -1.8625 -1.8636

It is obvious from this table that an inductive effect of the magnitude con-

sidered here can be included by first order perturbation theory with

sufficient accuracy and even inclusion of the bond perturbation in this way

may be adequate for many purposes. In any case, it is possible to con-

sider the first order perturbation energy as a zeroth approximation in the
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iterative method.

The first order perturbation approach should be quite useful in all

of those problems where there are a number of large diagonal perturba.-

tions which are almost but not necessarily exactly equal and other small

diagonal or off-diagonal perturbations. Many compounds and series of

compounds of biochemical interest OhOuld fall into this category.

The non-iterati-44'method, because it give* a closed analytical form
for the E = E(V) or m e.eexactly V = V(E) , relAtionship, is useful for

discussing and obtaining insight into those properties of simple, cyclic
systems which are p-incipally determined by a few large, localized
perturbations. The details introduced by small perturbations can then be

accounted for as minor corrections. The iterative method, on the other

hand, can be programmed for a computer and its value will be particularly

evident when a series of calculations on related systems must be carried out
with high accuracy. It should be kept in mind that the equation tfr_= 0

reduces the magnitude of any problem considerably because the. number of

non-vanishing elements in O becomes the measure of the "size" of the

problem.

In all of our calculations and discussions we have neglected the

effects introduced by overlap of basic atomic orbital set. This is physically

unrealistic. The second order iteration procedure can be extended easily for

the case including overlap. Further study is in progress on this aspect of

the problem. (See Appendix H).

Turning now to the applications of these methods we can mention

several possibilities.

a) Further applications to conjugated, aromatic systems.

Besides the many possibilities which exist for perturbation on the

basic benzene ring, there are similar applications to five and seven membered

rings. In Section III, we showed how Naphthalene and azulene can be treated

as perturbed (crosslinked) ten membered ring and we have treated the same

molecules with substituents at selected points. It should, eventually be possible

to treat many more cross-linked chains by these methods.

The application of the method to molecules of biochemical inportance
should be quite profitable. Even the very simple quantities obtained for
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these molecules by H-ackel theory such as the energies of the highest

occupied molecular orbital (HOMO) and the lowest empty molecular

orbital (LEMO) have been of great value in obtaining insight into the elec-

tronic nature of biochemical processes. Here one is not so much inter-

ested in the exact energy values but rather in the variation of the energies

among a series of molecules of the same general structure 51). It is

also important to realize that with these methods it is not necessary to

calculate all of the energy levels simultaneously as in the case with the

usual solution of the secular equation of the problem. One can concentrate

attention on the energies of the HOMO and the LEMO and follow their varia-

tion with molecular structure and forget about the other energy levels.

51) B. Pullman and A. Pullman, Revs. Modern Phys. 32, 428 (1960)

b) One dimensional problems.

The use of one dimensional models as prototypes for three dimen-

sional problems is very common and valuable in physics and chemistry

even though three dimensional problems may exhibit effects not occurring

in the one dimensional analogues. We consider it quite possible that such

problems as the electronic 5) and vibrational 53) properties of a linear

chain with impurities, one-dimensional alloys, anti -ferromagnetic linear

chain and other one-dimensional order-disorder phenomenon can be treated

either exactly or in good approximation with these methods.

52) See reference 42.

53) See reference 43.

c) Three dimensional problems.

The extension of the one-dimensional calculations to two and three

dimensions is not trivial although one has an intuitive feeling that the cyclic

symmetry which permits the inverse of the corresponding matrix to be

found by the method of Chebyshev polynomials can be displayed in three

dimensional problems. This will probably be easy in some cases, difficult

in others. In any case, we can be certain that in solid state physics, even
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the simple calculations which are based on assumptions similar to those

made in the Htickel theory of molecules will be needed for some time to

come and hence we need not be embarrassed by the crudity of our assump-

tions.

We have work underway on some of these applications and we shall

try to report further on them at a later date.
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APPENDIX I

GHEBYSHEV POLYNOMIALS

The Chebyshev polynomials of the first kind are defined by

os, 6os r= .Cos ('yx Ow e os

where X - CoS 0

The polynomials TvC satisfy the following recurrence relation

The polynomials of any arbitrary degree n can be generated by the above

recurrence relation with the starting values o X)=---- x x)= X

The Chebyshev polynomials of the second kind are defined by

-~ ~ ~ L f___ 1.[x) CVC OS4

where - C-o0s ,

The polynomials cx,) satisfy the recurrence relation
, .-- -@ - _c

with and C.) X

The relation between (m) and ^. W is given by

The explicit representations of and 'v% in powers of

X are

CrLLK) V t- [2. (h' - + 2; {-(r.....
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APPENDIX [I

INCLUSION OF OVERLAP

We have

+so+ 5)(Al)

where 5 is the perturbation matrix on S, which is the overlap matrix

characteristic of the cyclic unperturbed problem,

(AZ)

We can write equation (Al) as

C EE D -S) -( + (v-ES)( (A3)

and note that

so C WC

or

(/0~Q~lC =0 (A4)

The matrix can be written as

where S I is the overlap integral between nearest neighbours, S between second

nearest neighbours and so on. So the matrix can be inverted in terms

of Chebyshev polynomials (Section III of reference 44) and we can apply the

non-iterative method or iterative method as before with slight modification.

To apply partitioning technique, we convert the matrix

into a hermetian matrix by premultiplying by Q , So we get

(W -W w~c 0(A5)
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Define /I-A KO

M"'c =0 (A6)

Following the procedure outlined earlier, we construct a second order itera-

tion scheme

where the prime denotes differentiation with respect to E . Now

M= (V-E S) - (V -ES) X< (V- ES)

ff: - 5 + S V (W-Es) + (C- ES) kS - (V-ES)('-p.S)

Now11 LE 1± >K-
-o- : E-E

So

{ -5 + S((V-ES) t(V-ES)frS + (V-ES) ( (/ , <(V-.S).

For exact E and C , we have C itO( . But for arbitrary

EO o C. we have in general

Defining S " finally we get

C0 + 4-c0 _~~o A LDt~
cc (A -. 4
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So the final iteration scheme becomes

Following reference 1, we can also consider the non-iterative scheme.

For one diagonal element perturbed, we get from the equation

which yields the energy levels E in terms of V1 1 • In a similar way, we

can derive an analogous formula for one bond being perturbed only. These

equations are slightly more complicated than those in the case of overlap

neglected but still simple enough to be quite useful.
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